
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 38, No. 1, February 2025
http://dx.doi.org/10.14403/jcms.2025.38.1.9

SPECTRUM OF LINE ARRANGEMENTS WITH

MULTIPLICITIES: A COMBINATORIAL

APPROACH VIA LATTICE POINT ENUMERATION

Youngho Yoon*

Abstract. We introduce a combinatorial method for com-
puting the spectrum of singularities using lattice point enu-
meration in regions determined by the defining equation. For
line arrangements with multiplicities, our approach reveals the
interplay between global and local contributions to the spec-
trum through explicit counting of lattice points. A series of
transformations of these regions preserves the spectral data
while simplifying the counting process. We highlight the case
of f(x, y) = xm1ym2 as an illustrative example, where the
method reduces the problem to counting lattice points on two
line segments and naturally explains the role of gcd(m1,m2).
This work provides a new perspective on the spectra of line
arrangements with multiplicities, with potential applications
to general non-isolated singularities.

1. Introduction

The spectrum of a hypersurface singularity, introduced by Steen-
brink [2], is a fundamental invariant that encodes both the mon-
odromy action and mixed Hodge structure on the vanishing co-
homology. For isolated singularities, this invariant is well under-
stood through various methods. In particular, when a singularity
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is non-degenerate with respect to its Newton boundary, the lattice
points in the region bounded by the coordinate axes and the Newton
boundary completely determine the spectrum. This method works
effectively because, for isolated singularities, the Newton bound-
ary intersects with the coordinate axes, ensuring that this region
contains only finitely many lattice points.

However, for non-isolated singularities such as line arrangements
with multiplicities, the situation becomes fundamentally different.
In these cases, the Newton boundary typically does not intersect
with the coordinate axes, and moreover, most such singularities are
degenerate with respect to their Newton boundary. These struc-
tural differences mean that the classical approach of counting lattice
points in Newton polygons cannot be directly applied, necessitating
a new methodology.

Our key insight is that for line arrangements with multiplici-
ties, the spectrum can be computed through explicit enumeration
of lattice points in specific regions determined by the defining equa-
tion. These regions, built from generating vectors encoding degree
and multiplicities, admit transformations that preserve spectral in-
formation while simplifying the counting problem. Crucially, the
method distinguishes between global and local contributions, with
the latter capturing the influence of each line’s multiplicity.

2. Preliminaries

2.1. Multi Arrangements of Lines and Their Singulari-
ties

Let f =
∏

l∈L f
ml
l ∈ C[x, y] be a homogeneous polynomial where

each fl is a reduced linear form. This defines:

• A singularity at the origin in C2

• A collection of points {[fl]}l∈L in P1 corresponding to the di-
rections of the lines

• Multiplicity ml associated to each direction [fl]
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2.2. The Milnor Fiber

The local structure of the singularity is encoded in the Milnor
fiber:

Definition 2.1 (Milnor Fiber). For sufficiently small ϵ > 0 and
0 < |δ| ≪ ϵ, the Milnor fiber is:

Mf = {(x, y) ∈ C2 : ∥(x, y)∥ < ϵ, f(x, y) = δ}

This analytic construction provides the foundation for computing
spectral invariants through its monodromy action and mixed Hodge
structure.

2.3. The Spectrum

The interplay between the monodromy action and mixed Hodge
structure on the vanishing cohomology yields a fundamental invari-
ant - the spectrum - which can be expressed as a fractional Laurent
polynomial:

Definition 2.2 (Spectrum). The spectrum of f is:

Spf (t) =
∑
α∈Q

nf,αt
α

where the multiplicities nf,α are given by:

nf,α =
∑
j∈Z

(−1)j−1 dimGrpF H̃
j(Mf ,C)λ

with p = ⌊2− α⌋ and λ = exp(−2πiα). Here:

• H̃j(Mf ,C)λ is the λ-eigenspace of the reduced cohomology
under the monodromy

• F is the Hodge filtration on the cohomology
• The rational numbers α where nf,α ̸= 0 are called the spectral
numbers

• These spectral numbers reflect both the eigenvalues of the
monodromy and the Hodge filtration

Our combinatorial approach will compute these multiplicities through
lattice point enumeration.
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2.4. Known Results

For multi-arrangements of lines, the spectrum can be computed
using the following formula from [4].

Let f =
∏

l∈L f
ml
l be a product of linear forms, where each fl is a

distinct linear form in C[x, y], and ml is the multiplicity associated
with the line l. The total degree of f is d =

∑
l∈L ml, and the

reduced degree is dred = |L|, which is the number of distinct lines
in the arrangement.

We also define the Kronecker delta function δk,d as:

δk,d =

{
1 if k = d,

0 if k ̸= d.

With these definitions, the spectrum of f can be computed as
follows.

Theorem 2.3 (Previous Formula). Let f =
∏

l∈L f
ml
l be as

above, with total degree d. Then, for k ∈ {1, 2, . . . , d}, the spectral
multiplicities are given by:

nf, k
d
= dred −

∑
l∈L

⌈
kml

d

⌉
+ k − 1,

nf,1+ k
d
=
∑
l∈L

⌈
kml

d

⌉
− k − 1 + δk,d.

For all other α ∈ Q, we have nf,α = 0.

While this formula provides a complete description of the spec-
trum, its combinatorial structure is somewhat hidden behind com-
plex expressions involving ceiling functions and sums. Our ap-
proach will reveal this structure through explicit lattice point count-
ing in certain regions of Z2, making the combinatorial aspects more
transparent.

3. Lattice Regions via Generating Vectors

Let f =
∏

l∈L f
ml
l ∈ C[x, y] be a homogeneous polynomial defin-

ing a hypersurface in C2 with a singularity at the origin. Our
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approach to computing the spectrum relies on enumerating lattice
points in certain regions determined by generating vectors.

3.1. Global and Local Regions

Definition 3.1. For a positive integer d (the total degree of f),
we define:

1. The global region D2 is the parallelogram generated by vec-
tors:

w1 = (d, 0), w2 = (0, d)

That is,

D2 = {s1w1 + s2w2 : 0 < si < 1 for i = 1, 2} ∩ Z2

2. For each line Ll with multiplicity ml, the local region M2
ml

is
generated by:

v1 = (ml, d−ml), v2 = (0, d)

That is,

M2
ml

= {s1v1 + s2v2 : 0 < s1 < 1 and 0 < s2 ≤ 1} ∩ Z2

Remark 3.2. The key features of these regions are:

• Both regions are determined by two generating vectors reflect-
ing the structure of C2

• The vector (0, d) appears in both regions due to the fact that
each local singularity can be transformed to x = 0 by a change
of variables

• The local regions incorporate the multiplicity ml in their first
generator

• The coefficient s2 in the set M2
ml

includes 1

3.2. Weight Function and Slicing

Each coordinate provides a natural weight function h(a1, a2) =
a1
d
+ a2

d
on both regions. This leads to our key definition:

Definition 3.3. For any α ∈ Q, we define:

D2
α = {p ∈ D2 : h(p) = α}

M2
m,α = {p ∈ M2

m : h(p) = α}

Remark 3.4. The key features of these regions are:
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Figure 1. Comparison of global region D2 and lo-
cal region M2

m. Diagonal slices (blue and red lines)
and their projections onto the a1-axis determine the
spectrum contributions at weights k

d
and 1 + k

d
.

• Both regions are determined by two generating vectors reflect-
ing the structure of C2

• The vector (0, d) appears in both regions
• The local regions incorporate the multiplicity ml in their first
generator

• The coefficient s2 in the set M2
ml

includes 1

Proposition 3.5. The slices exhibit the following structure:

1. M2
ml,α

and D2
α are subsets of {(a1, a2) ∈ R2 : a1

d
+ a2

d
= α}

2. D2 = ∪αD
2
α and M2

ml
= ∪αM

2
ml,α

3. For k ∈ {1, . . . , d}, non-empty slices occur only at α = k
d
and

α = 1 + k
d

This slicing structure, illustrated in Figure 1, is the key to our
combinatorial interpretation of the spectrum. In the next section,
we will see how the multiplicities nf,α can be computed by counting
lattice points in these slices.
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4. Main Results

4.1. The Spectrum via Lattice Points

Let f =
∏

l∈L f
ml
l ∈ C[x, y] be a homogeneous polynomial defin-

ing a hypersurface in C2 with a singularity at the origin. Our
approach to computing the spectrum relies on enumerating lattice
points in certain regions determined by generating vectors. These
regions arise naturally from the structure of our vector space and
the line arrangement:

For a positive integer d (the total degree of f), we define:

1. The global region D2 is the parallelogram generated by vec-
tors:

w1 = (d, 0), w2 = (0, d)

That is,

D2 = {s1w1 + s2w2 : 0 < si < 1 for i = 1, 2} ∩ Z2

2. For each line Ll with multiplicity ml, the local region M2
ml

is
generated by:

v1 = (ml, d−ml), v2 = (0, d)

That is,

M2
ml

= {s1v1 + s2v2 : 0 < s1 < 1 and 0 < s2 ≤ 1} ∩ Z2

These regions capture both the global structure of the arrange-
ment through D2 and the local contributions of each line through
M2

ml
.

Remark 4.1. The key features of these regions are:

• Both regions are determined by two generating vectors reflect-
ing the structure of C2

• The vector (0, d) appears in both regions due to the fact that
each local singularity can be transformed to x = 0 by a change
of variables

• The local regions incorporate the multiplicity ml in their first
generator

• The coefficient s2 in the set M2
ml

includes 1
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We begin with a fundamental observation about the weight struc-
ture of these regions.

Lemma 4.2 (Weight Structure). For a point p = (a1, a2) in either
D2 orM2

ml
, the quantity h(p) = 1

d
(a1+a2)measures its contribution

to the spectrum multiplicity. In particular:

1. Points with a1 + a2 = d have weight 1
2. The total contribution at weight α is captured by the slices

D2
α and M2

ml,α

Proof. For any point p = (a1, a2) in either region, the weight
h(p) = a1+a2

d
measures its position relative to the lines a1+a2 = kd

for integers k.
The line a1 + a2 = d corresponds to weight 1, as:

h(p) =
a1 + a2

d
=

d

d
= 1

By construction of our regions and the integrality of coordinates,
lattice points can only occur at weights of the form k

d
or 1 + k

d

for k ∈ {1, . . . , d}, and these points must lie in the corresponding
slices.

Each coordinate provides a natural weight function h(a1, a2) =
a1
d
+ a2

d
on both regions. This leads to our key notion of slices:

For any α ∈ Q, we define:

D2
α = {p ∈ D2 : h(p) = α}

M2
m,α = {p ∈ M2

m : h(p) = α}

Proposition 4.3. The slices exhibit the following structure:

1. M2
ml,α

and D2
α are subsets of {(a1, a2) ∈ R2 : a1

d
+ a2

d
= α}

2. D2 = ∪αD
2
α and M2

ml
= ∪αM

2
ml,α

3. For k ∈ {1, . . . , d}, non-empty slices occur only at α = k
d
and

α = 1 + k
d

Proof. Properties (1) and (2) follow directly from the definitions
of our regions and the weight function.

For (3), observe that lattice points in both regions must satisfy:

a1 + a2
d

= α
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where a1, a2 are integers. Since 0 < a1, a2 < d, we must have
α ∈ (k

d
, 1+ k

d
) for some k ∈ {1, . . . , d}. Furthermore, the integrality

of coordinates forces α to take these specific values.

This slice structure leads to our main theorem, which expresses
the spectrum through lattice point enumeration:

Theorem 4.4 (Main Theorem). Let f =
∏

l∈L f
ml
l be a homo-

geneous polynomial with degree d. Then for any α ∈ Q:

nf,α = |D2
α| −

∑
l∈L

|M2
ml,α

|

where:

• |D2
α| counts lattice points in the global slice at weight α

• |M2
ml,α

| counts lattice points in the local slice for the line l at
weight α

• The sum is taken over all lines l ∈ L

Proof. First, we show that nf,α = 0 unless α = k
d
or 1 + k

d
for

some k ∈ {1, . . . , d}. This follows from Lemma 4.2, as all lattice
points lie on lines a1 + a2 = kd.

For these potential non-zero values, we establish the counting
formula by showing it yields the known multiplicities:

For α = k
d
:

nf, k
d
= |L| −

∑
l∈L

⌈kml/d⌉+ k − 1

= (k − 1)−
∑
l∈L

(⌈kml/d⌉ − 1)

For α = 1 + k
d
:

nf,1+ k
d
=
∑
l∈L

⌈kml/d⌉ − k − 1 + δk,d

= −

(
d−

∑
l∈L

⌈kml/d⌉

)
+ d− k − 1 + δk,d

These exact values match the classical formulas from Theorem
2.3, completing the proof.
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This geometric interpretation leads to fundamental properties of
the spectrum:

Corollary 4.5 (Structural Properties). For a line arrangement
with multiplicities:

1. The spectrum is supported in the interval (0, 2)
2. While the global contribution |D2

α| exhibits perfect symmetry
about α = 1, the local contributions |M2

ml,α
| generally do not

3. The spectrum exhibits symmetry around α = 1 if and only if
the singularity is isolated

Proof. (1) The support property follows from our weight function
h(a1, a2) = a1+a2

d
taking values in (0, 2) on both regions, as each

coordinate is bounded between 0 and d.
(2) The global region D2 is symmetric about the line a1+a2 = d,

which corresponds to weight 1. This symmetry induces a bijection
between lattice points at weights α and 2 − α. However, the local
regions M2

ml
include the face where s2 = 1, breaking this symmetry.

(3) The symmetry equivalence follows because the global con-
tribution is always symmetric, while local contributions break this
symmetry. Thus, symmetry occurs if and only if there are no lo-
cal contributions, which happens precisely when the singularity is
isolated.

4.2. Computation of Spectral Numbers

To make our main theorem effective, we need explicit methods for
counting lattice points. We begin with some specialized counting
functions:

Lemma 4.6 (Counting Functions). For any real number β and
positive integer a, define:

ua(β) =

{
⌈β⌉ − 1 if 0 < β ≤ a

0 otherwise

and

va(β) =

{
a− ⌈β⌉ if 0 < β < a

0 otherwise

Then:
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1. ua(β) counts integers in (0, β)
2. va(β) counts integers in [β, a)
3. ua(β) + va(β) = a− 1 when 0 < β < a

Proof. Properties (1) and (2) follow directly from the definitions.
For (1), when 0 < β ≤ a, ua(β) counts integers n satisfying 0 <
n < β, which is exactly ⌈β⌉ − 1. When β ≤ 0 or β > a, no such
integers exist.

Similarly for (2), when 0 < β < a, va(β) counts integers n
satisfying β ≤ n < a, which is exactly a − ⌈β⌉. When β ≤ 0
or β ≥ a, either all or no integers in [1, a) satisfy the condition.

For (3), observe that when 0 < β < a, the intervals (0, β) and
[β, a) partition the integers in (0, a), of which there are a−1 many.

These counting functions allow us to give explicit formulas for
the lattice point counts:

Theorem 4.7 (Explicit Enumeration). For k ∈ {1, . . . , d}:
1. For the global region:

|D2
k
d

| = k − 1 and |D2
1+ k

d

| = d− k − 1

2. For each local region:

|M2
ml,

k
d

| = ⌈kml/d⌉ − 1

|M2
ml,1+

k
d

| = ml − ⌈kml/d⌉

Proof. For the global region D2, at weight k
d
, we are counting

lattice points (a1, a2) satisfying:

a1 + a2
d

=
k

d
, 0 < a1, a2 < d

This reduces to counting positive integer solutions to a1 + a2 = k
with each ai less than k, giving k − 1 points.

For weight 1 + k
d
, we use the complementary count relative to d

and the symmetry of D2.
The local region counts follow similarly, using the counting func-

tions ua and va with appropriate scaling by ml

d
. The shape of the

local regions M2
ml

ensures the lattice points occur exactly where
predicted by these counting functions.
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Remark 4.8. These explicit formulas directly connect our geo-
metric perspective with classical results, showing how the ceiling
function ⌈·⌉ arises naturally from lattice point positions relative to
diagonal slices.

5. The Monomial Case

We now demonstrate the power of our approach by analyzing
the monomial case f(x, y) = xm1ym2 in detail. This case, while
simple, illuminates the key features of our method and provides
combinatorial insight into classical formulas.

Example 5.1. Consider f(x, y) = x6y9. We have:

• Global region D2: A square from (0, 0) to (15, 15)
• Two local regions:

– M2
6 for the line x = 0 with multiplicity 6

– M2
9 for the line y = 0 with multiplicity 9

For weight α = 5
18
:

|D2
5
18
| = 1 (lattice point at (1, 1))

|M2
6, 5

18
| = 0 (no lattice points)

|M2
9, 5

18
| = 1 (lattice point at (1, 1))

Therefore nf, 2
5
= 0. Similar computations give the full spectrum:

Spf (t) = t
1
3 + t

2
3 + t− t1+

1
3 − t1+

2
3

For the general case f(x, y) = xm1ym2 , our method reveals the
deep connection between the geometry of the regions and arithmetic
properties of the multiplicities:

Theorem 5.2. Let m := gcd(m1,m2) and define m′
1 := m1

m
,

m′
2 :=

m2

m
. Then:

1. The spectral multiplicities are 1 for α ≤ 1 and −1 for α > 1
2. On the line segment from (0, 0) to (m1,m2):

• Lattice points occur at k(m′
1,m

′
2) for k = 1, . . . ,m

• These points contribute to weights k
m

for k = 1, . . . ,m
3. On the line segment from (m1,m2) to (d, d):



Spectrum via lattice points 21

• Lattice points occur at (m1,m2) + k(m′
2,m

′
1) for k =

1, . . . ,m− 1
• These points contribute to weights 1+ k

m
for k = 1, . . . ,m−

1

a1

a2

Weight 1
Original M2

6 region

a1

a2

Weight 1
Transformed region M6

Figure 2. Weight-preserving transformation ap-
plied to the local region M2

6 . Left: original re-
gion. Right: transformed region with preserved lat-
tice point weights.

Proof. The key insight is that both local regions M2
m1

and M2
m2

can be transformed while preserving lattice points and weights.
Specifically:

1. For M2
m1

, we transform the region while preserving lattice
point weights relative to the line a1 + a2 = d

2. For M2
m2

, we apply a two-step transformation to minimize
overlap with the transformed M2

m1
region

3. The intersection points of the transformed regions precisely
capture the role of gcd(m1,m2)
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9

a1

a2

Weight 1
Transformed region M9

Figure 3. Two-step transformation of M2
9 showing

the original region (left), intermediate step (center),
and final configuration (right).

a1

a2

Weight 1
Combined regions

a1

a2

Weight 1/3 2/3 1 4/3 5/3
Essential line segments

Figure 4. Left: Intersection of transformed local
regions. Right: The resulting essential line segments
where all relevant lattice points must lie.

The lattice points on the resulting line segments then determine
the spectrum through:

Spf (t) = t+(1−t)
t

1
m − t

1− t
1
m

= t
1
m+t

2
m+· · ·+t1−t1+

1
m−t1+

2
m−· · ·−t2−

1
m
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Remark 5.3. This combinatorial approach provides natural ex-
planations for:

1. The appearance of gcd(m1,m2) through lattice enumeration
2. Symmetry breaking between weights less than 1 and greater

than 1
3. The role of primitive vectors (m′

1,m
′
2) in determining spectral

values

6. Conclusion and Future Work

In this paper, we introduced a combinatorial method for comput-
ing the spectrum of singularities using lattice point enumeration in
regions determined by the defining equation of line arrangements
with multiplicities. Our approach provides explicit formulas for
spectral multiplicities and reveals the interplay between global and
local contributions to the spectrum through the counting of lattice
points.

Specifically, we demonstrated how transformations of these re-
gions preserve the spectral data while simplifying the counting pro-
cess. The method was applied to the monomial case f(x, y) =
xm1ym2 , offering a natural explanation for the role of gcd(m1,m2)
in the spectrum. This work provides a new perspective on the
spectra of line arrangements with multiplicities and enhances the
understanding of their combinatorial structures.

Future research may focus on extending this combinatorial ap-
proach to other classes of non-isolated singularities. Investigating
the applicability of our method to more general hypersurfaces or
exploring the connections between lattice point enumeration and
other invariants in singularity theory could provide valuable in-
sights. Additionally, refining the counting techniques or developing
computational tools to facilitate these calculations may further ad-
vance the study of spectra in complex geometry.
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